Sarah Almazroa ${ }^{\text {a }}$, Mohamed H. Elnagdib ${ }^{\text {b }}$ and Abdellatif M. Salah El-Din*b
${ }^{\text {a }}$ Department of Chemistry, Girl's College of Education, Ryad, Kingdom of Saudi Arabia
${ }^{\text {b }}$ Department of Chemistry; Faculty of Science; Cairo University ,Giza-A. R. Egypt
e-mail: shelmy@access.com.eg
Received December 18, 2002
Received Revised October 18, 2003

Abstract

The enaminones $\mathbf{1 b}, \mathbf{d}, \mathbf{f}$ react with 4-phenyl-3-methyl-5-pyrazoleamine $\mathbf{3 a}$ to yield the pyrazole derivatives $4 \mathbf{a}-\mathbf{c}$ that cyclised readily on reflux in pyridine solution in presence of hydrochloric acid to yield the pyrazolo[1,5-a]pyrimidines 5a-c. Similarly 3(5)-amino- $1 H$-triazole ($\mathbf{3 b}$) reacted with $\mathbf{1 b}$,d,f to yield the tri-azolo[1,5-a]pyrimidines $\mathbf{5 d} \mathbf{d}$. In contrast attempted condensation of the 5 -tetrazoloamine ($\mathbf{3 c}$) with 1a,d,e resulted in its trimerisation and only triaroylbenzene 8a,d,e was isolated. The reaction of $\mathbf{1 a , b , d}$ with anthranilonitrile $9 \mathbf{a}$ and the reaction of 1a-c with the 2 -aminocyclohexene thiophene-3-nitrile 10a afforded the cis enaminones 11a-c and 12a-c. Similarly, reaction of 1a-c with the methylanthranilate $\mathbf{9 b}$ and reaction of $\mathbf{1 b}, \mathbf{e}$ with ethyl 2-aminocyclohexene thiophene-3-carboxylate $\mathbf{1 0 b}$ afforded the cis enaminones 11d-f and 12d,e respectively. Attempted cyclization of 11a-c into quinoline failed. Successful cyclization of 11d into the quinolinone $\mathbf{1 3}$ could be affected, on heating for five minutes in a domestic microwave oven at full power. The reaction of $\mathbf{1 a - c}, \mathbf{f}$ with piperidine afforded the trans enaminones $\mathbf{1 4 a - d}$. Similarly, trans $\mathbf{1 4 e}$ was formed from the reaction of $\mathbf{1 b}$ with morpholine. The coupling reaction of $\mathbf{1 b}$ with excess of benzene diazonium chloride afforded the formazane 16. The enaminone 2 reacted with heterocyclic amines to yield the pyridones $\mathbf{1 7 , 1 8}$.

J. Heterocyclic Chem., 41, 267 (2004).

In conjunction to our interest in the chemistry of enaminones [1-3], we report here our results aiming to further explore synthetic potential of this class of compounds. The newly required enaminones $\mathbf{1 a - f}$ and $\mathbf{2}$ were prepared via refluxing methyl ketones and dibenzylketone with excess of dimethylformamide dimethylacetal (DMFDMA). Attempted preparation of $\mathbf{1 b}, \mathbf{c}$ by refluxing the respective methyl ketones with DMFDMA in refluxing acetic acid [4] or in toluene solution [5] utilizing reported procedure for synthesis of enaminones from reaction of arylmethyl ketones with DMFDMA resulted in less than 25% yield even after prolonged reflux. The enaminones $\mathbf{1 b}, \mathbf{d , f}$ reacted with the aminopyrazole derivative 3a to yield the enaminone 4a-c. The structures of which proved to exist in the cis form as ${ }^{1} \mathrm{H}$ NMR revealed the presence of olifinic protons at $\delta 5.95$ and 6.85 ppm with $J=9 \mathrm{~Hz}$ typical for cis olefinic protons.

We believe that domination the cis form is a result of hydrogen bonding of the NH and aroylcarbonyl which "fixes" this form. Compounds 4a-c readily cyclized into the pyrazolo $[1,5-a$]pyrimidines 5a-c on reflux in pyridine solution in the presence of concentrated hydrochloric acid (cf. Scheme 1).
The reaction of pyrazole amines with enaminones has been reported earlier, however to our knowledge this is the first reported isolation of $\mathbf{4}$ thus confirming structure of the formed pyrazolo[1,5-a]pyrimidines. Similar to the reported behavior of 1,2,4-1 H -triazolo-5-amine (3b) toward enaminones, $\mathbf{3 b}$ reacted with $\mathbf{1 b}, \mathbf{d , f}$ to yield the 1,2,4-triazolo[1,5-a]pyrimidines 5d-f, respectively.

Scheme 1

1a, $\mathrm{R}=\mathrm{Ph}$
b, $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c, $R=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
d, $\mathrm{R}=$ Thienyl
d, $\mathrm{R}=$ Thien
e, $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$

2

3a, $\mathrm{X}=\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{Y}=\mathrm{C}-\mathrm{CH}_{3}$
b, $\mathrm{X}=\mathrm{N}, \mathrm{Y}=\mathrm{CH}$
c, $\mathrm{X}=\mathrm{Y}=\mathrm{N}$

$\mathbf{4 , 5}$	X	Y	R	$\mathbf{4 , 5}$	X	Y	R
\mathbf{a}	$\mathrm{C}-\mathrm{Ph}$	$\mathrm{C}-\mathrm{Me}$	4-ClC $6 \mathrm{H}_{4}$	\mathbf{d}	N	CH	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$
b	$\mathrm{C}-\mathrm{Ph}$	$\mathrm{C}-\mathrm{Me}$	Thienyl	\mathbf{e}	N	CH	Thienyl
c	$\mathrm{C}-\mathrm{Ph}$	$\mathrm{C}-\mathrm{Me}$	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	\mathbf{f}	N	CH	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$

In contrast to this attempted consideration of 5-tetrazole amine $\mathbf{3 c}$ with $\mathbf{1 a}, \mathbf{d}, \mathbf{f}$ failed, only the triaroyl benzenes $\mathbf{8 a}, \mathbf{d , f}$ were isolated. We believe that acidity of the reaction mixture has prompted such trimerization which has very recently been reported to occur on refluxing enaminones in acetic acid solution. Formation of intermediates 6 and 7 is suggested although direct concerted $2+2+2$ cycloaddition leading directly to 7 cannot be overlooked (cf. Scheme 2).

Trimerization of enaminones into triazoylbenezenes has recently been reported from our laboratories [6,7].
microwave oven at full power. The reaction of $\mathbf{1 a}, \mathbf{c}, \mathbf{f}$ with piperidine afforded the trans enaminones $\mathbf{1 4 a , c , f}$.

Scheme 2

Compound 1a-d reacted with anthranilonitrile 9a and methylanthranilate 9 b to yield the cis enaminones 11a-f. The ${ }^{1} \mathrm{H}$ NMR showed the presence of a mixture of the cis form 11 and trans form 11'. ${ }^{1} \mathrm{H}$ NMR indicated the predominance of the cis form (cf. Table 1 for relative concentration of cis and trans forms in the mixture as indicated from ${ }^{1} \mathrm{H}$ NMR). Predominance of cis form is a result of hydrogen bonding. Although the trans form can also be stabilized through hydrogen bonding with ester group, it seems that this effect does not give as much stability to the trans form.
Similarly, the reaction of 1a-c with 2-aminocyclohexene thiophene-3-nitrile 10a and the reaction of $\mathbf{1 b}, \mathbf{e}$ with ethyl 2-aminocyclohexene thiophene-3-carboxylate 10b afforded the corresponding enaminones 12a-e ($c f$. Scheme 3).

Scheme 3

9a, $\mathrm{X}=\mathrm{CN}$
b, $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}$

11

10a, $\mathrm{X}=\mathrm{CN}$
b, $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}$

12

11

13

11	X	R
a	CN	Ph
b	CN	4-ClC $\mathrm{CN}_{6} \mathrm{H}_{4}$
c	CN	thienyl
d	$\mathrm{CO}_{2} \mathrm{Me}$	Ph
e	$\mathrm{CO}_{2} \mathrm{Me}$	4-ClC $\mathrm{Cl}_{6} \mathrm{H}_{4}$
f	$\mathrm{CO}_{2} \mathrm{Me}$	2- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

12	X	R
a	CN	Ph
b	CN	4- $-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c	CN	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
d	$\mathrm{CO}_{2} \mathrm{Et}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
e	$\mathrm{CO}_{2} \mathrm{Et}$	furyl

Attempted cyclization of 11a-c into quinoline failed. Successful cyclisation of 11d into the quinolinone 13 could be affected, on heating for five minutes in domestic

Table 1
Relative concentration of cis and trans form of enaminones 11, $\mathbf{1 2}$ as indicated from ${ }^{1} \mathrm{H}$ NMR

Compounds	Cis form	Trans form
11b	7	1
11e	4	1
11f	4.2	1
12a	6.5	1
12c	6	1
12e	4	1

Similarly, trans 14b was formed from the reaction of 1b with morpholine.

Similar to established behavior of enaminones toward aromatic diazonium salts [8,9] 1b couples with benzene diazonium chloride to yield the arylhydrazone $\mathbf{1 5}$ as major

15

17

14
$\begin{array}{ll}\text { a, } \mathrm{R}=\mathrm{Ph}, & \mathrm{X}=\mathrm{CH}_{2} \\ \text { b } \mathrm{R}=4-\mathrm{ClC}-\mathrm{H}_{4} & \mathrm{X}=\mathrm{CH}_{2}\end{array}$
c, $\mathrm{R}=2-\mathrm{NO}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{X}=\mathrm{CH}_{2}$
c, $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}=\mathrm{CH}_{2}$
d, $\mathrm{R}=4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}=\mathrm{CH}_{2}$
$\mathrm{X}=4-\mathrm{ClC}_{6} \mathrm{H}_{4} \quad \mathrm{X}=\mathrm{O}$
Scheme 4

16

18
reaction product [10,11]. However GCMS indicated always the presence of the formazane $\mathbf{1 6}$. Pure $\mathbf{1 6}$ could be prepared on coupling 1ab with excess benzene diazonium chloride in DMF solution at $0^{\circ} \mathrm{C}$. The reaction of 2 with aminoazoles afforded the azolylpyridones $\mathbf{1 7}$ and $\mathbf{1 8}$ (Scheme 4).

EXPERIMENTAL

All melting points were measured on Gallenkamp electrothermal melting point apparatus and are uncorrected. IR spectra were recorded as KBr pellets on a Pye Unicam SP 3-300 Spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in deuterated dimethylsulfoxide (d_{6}-DMSO): or deutrated chloroform (CDCl_{3}) at 200 MHz on a Varian Gemini NMR spectrometer using tetramethylsilane (TMS) as an internal reference and results are expressed as δ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Microwave experiments were conducted in a microwave oven DAEWOO, edition II (KOR-8667). Elemental analyses were carried out at the Microanalytical center of Cairo University.

Preparation of Pyrazole Derivatives 4a-c and Triazole Derivatives 4d-f.

General Procedure.
To a solution of each of enaminone $\mathbf{1 b}, \mathbf{d}, \mathbf{f}(10 \mathrm{mmole})$ in ethanol (20 ml), 4-phenyl-3-methyl-5-pyrazoleamine 3a or 3(5)-amino1H-triazole 3b (10 mmole) was added. The reaction mixture was refluxed for 6 h . The solid product formed on evaporation the excess solvent was collected by filtration and crystallized from ethanol to give 4a-f respectively.
1-(4-Chloro phenyl)-3-(5-methyl-4-phenyl-2H-pyrazo-3-ylamino)-propenone (4a).

This compound was obtained in 76% yield, $m p 91-92{ }^{\circ} \mathrm{C}$; IR (KBr): v 3350-3240(NH), 3024 (CH, olefinic), 2916 (CH, aliphatic), $1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.85$ (s , $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.95(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}$, olefinic H), 7.14-8.18 (m, 9H, H-Ar), $7.50(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), $8.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.02(\mathrm{~d}, 1 \mathrm{H}$, NH); MS (EI, 70 eV): m/z (\%)= 337 [M^{+}, (37)].

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{Ocl}$: C, 67.56; H, 4.77; $\mathrm{N}, 12.44$; $\mathrm{Cl}, 10.49$ \%. Found: C, $67.70 ; \mathrm{H}, 4.60$; N, $12.50 ; \mathrm{Cl}, 10.60$.

3-(5-Methyl-4-phenyl-2Hpyrazo-3-ylamino)-1-thiophen-2-ylpropenone (4b).

This compound was obtained in 71% yield, mp $96-97^{\circ} \mathrm{C}$; IR (KBr): v 3350-3244 (NH), 3020 (CH, olefinic), 2918 (CH, aliphatic), $1660 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 5.90(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), 7.10-7.85 (m, 8H, H-Ar), 7.42 (d, $J=9 \mathrm{~Hz}$, olefinic H), $8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 66.00 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58 ; \mathrm{S}$, 10.36 \%. Found: C, 65.90; H, 4.90; N, 13.50; S, 10.30.

3-(5-Methyl-4-phenyl-2H-pyrazo-3-ylamino)-1-p-tolylpropenone (4c).
This compound was obtained in 65% yield $\mathrm{mp} 110-111^{\circ} \mathrm{C}$; IR (KBr): v 3360-3254 (NH), 3015 (CH, olefinic), 2921 (CH, aliphatic), $1645 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.39$ (s , $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 5.98 (d, $J=9 \mathrm{~Hz}$, olefinic H), 7.05-
7.89 (m, 9H, H-Ar), 7.62 (d, $J=9 \mathrm{~Hz}$, olefinic H), 8.25 (s, 1 H , $\mathrm{NH}), 12.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.69 ; \mathrm{H}, 6.03 ; \mathrm{N}, 13.24 \%$. Found: C, $75.60 ; \mathrm{H}, 6.00$; N, 13.20.
1-(4-Chlorophenyl)-3-(2H-[1,2,4]triazol-3-ylamino)-propenone (4d).

This compound was obtained in 66% yield, $\mathrm{mp} 136-38^{\circ} \mathrm{C}$; IR (KBr): v 3355-3230(NH), 3022 (CH, olefinic), 2912 (CH, aliphatic), $1652 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=6.54$ (d, $J=$ 9 Hz , olefinic H), 6.95-7.85 (m, 4H, H-Ar), 7.45 (d, $J=9 \mathrm{~Hz}$, olefinic $\mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}$ triazoleH-5), $8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{OCl}$. C, $53.13 ; \mathrm{H}, 3.65 ; \mathrm{N}, 22.53 ; \mathrm{Cl}$, 14.26 \%. Found: C, $53.20 ; \mathrm{H}, 3.70 ; \mathrm{N}, 22.50 ; \mathrm{Cl}, 14.30$.

1-Thiophen-2-yl-3-($2 H-1,2,4]$ triazol-3-ylamino)-propenone (4e).
This compound was obtained in 61% yield, mp 96-98 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3345-3240 (NH), 3030 (CH, olefinic), 2922 (CH, aliphatic), $1646 \mathrm{~cm}-1$ (CO); 1H NMR (d6-DMSO): $\delta=6.35$ (d, $\mathrm{J}=9 \mathrm{~Hz}$, olefinic H$)$, 7.05-7.70 $(\mathrm{m}, 3 \mathrm{H}$, thiophene H$), 7.35(\mathrm{~d}, \mathrm{~J}=$ 9 Hz , olefinic H), 8.14 (s, 1H triazoleH-5), 8.45 (s, 1H, NH), 12.52 (d, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{OS}: \mathrm{C}, 49.08 ; \mathrm{H}, 3.66$; N, 25.44; S, 14.56 \%. Found: C, $49.0 ;$ H, $3.70 ;$ N, $25.50 ;$ S, 14.60.

1- p-Tolyl-3-(2H-[1,2,4]triazol-3-ylamino)-propenone (4f).
This compound was obtained in 65% yield, mp $103-105^{\circ} \mathrm{C}$; IR (KBr): v 3365-3250(NH), $3020(\mathrm{CH}$, olefinic), $2918(\mathrm{CH}$, aliphatic), $1655 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.38$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.70(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), $7.25-7.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$, $7.65(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), 8.28 (s, 1H triazole H-5), 8.55 (s, $1 \mathrm{H}, \mathrm{NH}), 12.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 63.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 24.55 \%$. Found: C, 63.20; H, 5.20; N, 24.50.

Cyclization of 4a-c into Pyrazolo[1,5-a]pyrimidine Derivatives 5a-c and 4d-f into Triazolo [1,5-a]pyrimidine Derivatives 5d-f.

General Procedure.
A solution of each of 4a-f (10 mmole) was refluxed in pyridine $(20 \mathrm{ml})$ for 2 h , then 1 ml of concentrated hydrochloric acid was added and the reflux continued for further one hour. After cooling, the reaction mixture was poured into ice-cold water, the solid precipitate so formed was filtered off and recrystalized from ethanol to afford 5a-f respectively.

7-(4-Chlorophenyl)-2-methyl-3-phenylpyrazolo[1,5-a] pyrimidine (5a).

This compound was obtained in 77% yield $\mathrm{mp} 196-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.14-8.28(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-$ Ar), ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=18.65,122.20,124.90,127.40$, 128.10, 128.62, 129.05, 129.87, 132.60, 133.90, 135.10, 136.70, 142.20, 158.20, 165.10.Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Cl}$. C, 71.36; H, 4.41 ; N, 13.14, Cl, 11.09 \%. Found: C, 71.30 ; H, 4.40; N, 13.20, Cl, 11.10.

2-Methyl-3-phenyl-7-thiophen-2-yl-pyrazolo[1,5-a]pyrimidine (5b).

This compound was obtained in 73% yield $\mathrm{mp} 158-160^{\circ} \mathrm{C}$; IR (KBr): $v 2925\left(\mathrm{CH}\right.$, aliphatic), $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=$ $2.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.10-7.65$ (m, 10H, H-Ar).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 70.08 ; \mathrm{H}, 4.50 ; \mathrm{N}, 14.42 ; \mathrm{S}$, 11.00%. Found: C, $70.10 ;$ H, $4.60 ;$ N, 14.50, S, 10.90 .

2-Methyl-3-phenyl-7-p-tolyl-pyrazolo[1,5-a]pyrimidine (5c).
This compound was obtained in 65% yield $\mathrm{mp} 178-180^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 2918\left(\mathrm{CH}\right.$, aliphatic), $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=$ 2.35 (s, 3H, CH3), $2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.05-7.78(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-\mathrm{Ar})$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3}$: C, 80.24; H, 5.72; N, 14.04%. Found: C, 80.30; H, 5.70; N, 14.0.
7-(4-Chlorophenyl)-[1,2,4]triazolo[1,5- a]pyrimidine (5d).
This compound was obtained in 72% yield $\mathrm{mp} 226-228{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=7.14-8.25(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.50(\mathrm{~s}, 1 \mathrm{H}$, triazole $\mathrm{H}-5$).
Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{Cl}$: C, 57.28; H, 3.06; N, 24.29; Cl, 15.37 \%. Found: C, $57.30 ; \mathrm{H}, 3.10 ; \mathrm{N}, 24.20 ; \mathrm{Cl}, 15.40$.

7-(Thiophen-2-yl-[1,2,4]triazolo[1,5-a]pyrimidine (5e).

This compound was obtained in 72% yield $\mathrm{mp} 180-182{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=7.0-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$, thiphene), 7.55 (d, 1 H , pyrimidine H), $8.40(\mathrm{~s}, 1 \mathrm{H}$, triazole $\mathrm{H}-5$) 8.88 (d, 1 H , pyrimidine H).

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 53.45 ; \mathrm{H}, 2.99$; N, 27.70; S, 15.85 \%. Found: C, 53.50; H, 3.10; N, 27.60; S, 15.90.

7-p-Tolyl-[1,2,4]triazolo[1,5-a]pyrimidine (5f).
This compound was obtained in 75% yield $\mathrm{mp} 188-190^{\circ} \mathrm{C}$; IR (KBr): v 2914 (CH, aliphatic), cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=$ $2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.15-7.78(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.30(\mathrm{~s}, 1 \mathrm{H}$, triazole $\mathrm{H}-5$), 8.55 (sd, 1 H , pyrimidine H).
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}$: C, 68.56; H, 4.79; N, 26.65%. Found: C, 68.60; H, 4.70; N, 26.70.

General Procedure for the Preparation of $\mathbf{8 a , d , e}$.
Each of compound $\mathbf{1 a}, \mathbf{d}, \mathbf{e}(10 \mathrm{mmol})$ was refluxed in acetic acid (20 ml) for 4 h after which it was cooled to room temperature. The precipitate, which formed, was collected by filtertration and successively crystallized from ethanol/dioxane ($3: 1 \mathrm{v} / \mathrm{v}$).

1,3,5-Tri-benzoylbenzene (8a).

Yield (71\%) mp 242-244 ${ }^{\circ} \mathrm{C}$; -IR (KBr) $v_{\text {max }}=1666(\mathrm{CO})$, $\mathrm{cm}^{-1}-{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta_{\mathrm{H}}=6.95-7.75(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar}-\mathrm{H}){ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta_{\mathrm{C}}=127.90,129.85,131.96,135.20,136.80$, 137.86, $188.50(\mathrm{CO})$. -MS (EI, 70 EV$): \mathrm{m} / \mathrm{z}(\%)=390(100)$ $\left.\mathrm{M}^{+}\right]$.
Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 83.06; H, 4.65%. Found: C, 83.10; H, 4.70.

1,3,5-Tri-thiopheno-2-ylbenzene (8d).

Yield (78\%) mp 262-264 ${ }^{\circ} \mathrm{C}$; -IR (KBr) $v_{\text {max }}=1660(\mathrm{CO})$, $\mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta_{\mathrm{H}}=7.3-8.35(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-\mathrm{MS}$ (EI, 70 EV): $\mathrm{m} / \mathrm{z}(\%)=408(8.0)\left[\mathrm{M}^{+}\right]$.
Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}_{3}$: C, 61.74; H, 2.96; S, 23.55%. Found: C, 61.70; H, 3.00; S, 23.50.

1,3,5-Tri-furano-2-ylbenzene (8e).

yield (70%) mp $238-240{ }^{\circ} \mathrm{C}$; -IR (KBr) $v_{\text {max }}=1654(\mathrm{CO})$, $\mathrm{cm}^{-1}{ }^{-1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta_{\mathrm{H}}=6.85-8.10(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{O}_{6}: \mathrm{C}, 70.00 ; \mathrm{H}, 3.36 \%$. Found: C, 70.10; H, 3.40 .

Preparation of enaminones 11a-f and 12a-e.

General procedure.
To a solution of each of compounds $\mathbf{1 a}$-d (10 mmole) in dioxane (20 ml), was added (10 mmole) of each of anthranilonitrile $\mathbf{9 a}$, methylanthranilate $9 \mathrm{~b}, 2$-amino-cyclohexene thiophene-3nitrile 10a, ethyl 2-aminocyclohexene thiophene-3-carboxylate 10b. The reaction mixture was refluxed for 8 h in each case and left to cool over night. The precipitated solid in each case was separated by filtration and recystallized from the proper solvent.

2-(3-Oxo-3-phenylpropenylamino)benzonitrile (11a).
This compound was obtained in 75% yield $\mathrm{mp} 123-125{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3350-3244 (NH), 3018 (CH, olefinic), 2925 (CH, aliphatic), $2218(\mathrm{CN}), 1635 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}-$ DMSO): $\delta=6.45$ (d, $J=9 \mathrm{~Hz}$, olefinic H), 7.05-7.90 (m, 9H, HAr), 7.78 (d, $J=9 \mathrm{~Hz}$, olefinic H), 12.20 (d, 1H, NH), -MS (EI, 70 EV): $m / z(\%)=248(36)\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.40 ; \mathrm{H}, 4.87 ; \mathrm{N}, 11.28 \%$. Found: C, 77.30; H, 4.90; N, 11.30.
2-[3-(4-Chlorophenyl)-3-oxo-propenylamino)benzonitrile (11b).
This compound was obtained in 71% yield $\mathrm{mp} 133-135{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3341-3238 (NH), 3019 (CH, olefinic), 2920 (CH, aliphatic), $2221(\mathrm{CN}), 1639 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}-$ DMSO): $\delta=6.55(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), $7.0-7.95(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-$ Ar), 7.71 (d, $J=9 \mathrm{~Hz}$, olefinic H), 12.40 (d, 1H, NH), -MS (EI, 70 $\mathrm{EV}): m / z(\%)=282(40)\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OCl}: \mathrm{C}, 67.97 ; \mathrm{H}, 3.92 ; \mathrm{N}, 9.91 ; \mathrm{Cl}$, 12.54 \%. Found: C, $68.00 ;$ H, $4.00 ;$ N, $9.90 ; \mathrm{Cl}, 12.50$.

2-(3-Oxo-3-thiophen-2-yl-propenylamino)benzonitrile (11c).
This compound was obtained in 75% yield $\mathrm{mp} 114-116{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3350-3304 (NH), 3025 (CH, olefinic), 2920 (CH, aliphatic), $2214(\mathrm{CN}), 1630 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}{ }^{-}$ DMSO): $\delta=6.61$ (d, $J=9 \mathrm{~Hz}$, olefinic H), 7.15-7.99 (m, 7H, HAr), 7.66 (d, $J=9 \mathrm{~Hz}$, olefinic H), 12.30 (d, 1H, NH), -MS (EI, 70 $\mathrm{EV}): m / z(\%)=254(46)\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 66.12$; H, 3.96; N, 11.02; S, 12.61%. Found: C, 66.10; H, 4.00; N, 11.10; S, 12.70.

Methyl 2-(3-oxo-3-phenylpropenylamino)benzoate (11d).
This compound was obtained in 65% yield $\mathrm{mp} 108-110{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3310-3250(NH), 3025 (CH, olefinic), 2920 (CH , aliphatic), $1710,1640 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.41(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H$), 7.05-7.90(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.70(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), $12.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, $72.58 ; \mathrm{H}, 5.37 ; \mathrm{N}, 4.98 \%$. Found: C, $72.60 ; \mathrm{H}, 5.40 ; \mathrm{N}, 4.90$.

Methyl 2-[3-(4-chlorophenyl)-3-oxo-propenylamino)benzoate (11e).

This compound was obtained in 68% yield $\mathrm{mp} 114-115{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3315-3250(NH), $3023(\mathrm{CH}$, olefinic), 2924 (CH , aliphatic), 1708, $1642 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.42(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H$), 7.05-8.10(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.60(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H$), 13.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}: \mathrm{C}, 64.67 ; \mathrm{H}, 4.47 ; \mathrm{N}, 4.44 ; \mathrm{Cl}$, 11.23%. Found: C, 64.70; H, 4.40; N, 4.50; Cl, 11.30.

Methyl 2-[(3-(2-nitrophenyl)-3-oxo-propenylamino)benzoate (11f).
This compound was obtained in 69% yield $\mathrm{mp} 120-122{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3320-3240(NH), 3021 (CH, olefinic), 2922
(CH, aliphatic), 1715, $1640 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.25(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H$), 7.14-7.98(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.72(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H$), 12.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $62.58 ; \mathrm{H}, 4.32 ; \mathrm{N}, 8.58 \%$. Found: C, 62.60; H, 4.40; N, 8.60.
2-(3-Oxo-3-phenylpropenylamino)-4,5,6,7-tetrahydrobenzo-[b]thiophene-3-carbo-nitrile (12a).

This compound was obtained in 79% yield $\mathrm{mp} 168-170{ }^{\circ} \mathrm{C}$ (AcOH); IR (KBr): v 3350-3154 (NH), 3018 (CH, olefinic), 2925 (CH, aliphatic), $2210(\mathrm{CN}), 1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}-$ DMSO): $\delta=1.82(\mathrm{~m}, 4 \mathrm{H}), 2.75(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), 7.10-7.89 (m, 5H, H-Ar), 7.62 (d, $J=9 \mathrm{~Hz}$, olefinic H), 10.99 (d, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 70.10 ; \mathrm{H}, 5.23 ; \mathrm{N}, 9.08 ; \mathrm{S}$, 10.40%. Found: C, $70.10 ; \mathrm{H}, 5.30 ; \mathrm{N}, 9.10 ; \mathrm{S}, 10.50$.

2-[3-(4-Chlorophenyl)-3-oxo-propenylamino]-4,5,6,7-tetrahy-drobenzo[b]thiophene-3-carbonitrile (12b).
This compound was obtained in 79% yield $\mathrm{mp} 178-180^{\circ} \mathrm{C}$; IR (KBr): v 3355-3159 (NH), 3018 (CH, olefinic), 2922 (CH, aliphatic), 2222 (CN), $1645 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=1.80(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), 7.157.95 (m, 4H, H-Ar), 7.69 (d, $J=9 \mathrm{~Hz}$, olefinic H), $11.90(\mathrm{~d}, 1 \mathrm{H}$, NH); MS (EI, 70 EV): $m / z(\%)=342(43)\left[\mathrm{M}^{+}\right]$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OSCl}: \mathrm{C}, 63.06 ; \mathrm{H}, 4.41 ; \mathrm{N}, 8.17$; S, 9.35 \%. Found: C, 63.10; H, 4.30; N, 8.10; S, 9.50.

2-[3-(2-Nitrophenyl)-3-oxo-propenylamino]-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carbonitrile (12c).
This compound was obtained in 74% yield $\mathrm{mp} 138-140{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3335-3169 (NH), 3012 (CH, olefinic), 2920 (CH, aliphatic), $2220(\mathrm{CN}), 1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}-$ DMSO): $\delta=1.82(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{~d}, J=9 \mathrm{~Hz}$, olefinic H), 7.65-8.10 (m, 4H, H-Ar), 7.68 (d, $J=9 \mathrm{~Hz}$, olefinic $\mathrm{H}), 11.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 61.18 ; \mathrm{H}, 4.28 ; \mathrm{N}, 11.89 ; \mathrm{S}$, 9.07%. Found: C, $61.20 ;$ H, $4.30 ;$ N, 11.90; S, 9.10 .

Ethyl 2-[3-(4-Chlorophenyl)-3-oxo-propenylamino]-4,5,6,7tetrahydrobenzo $[b]$ thiophene-3-carboxylate (12d).
This compound was obtained in 74% yield $\mathrm{mp} 128-130{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3350-3175 (NH), 3018 (CH, olefinic), 2922 (CH , aliphatic), $1695,1645 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{q}, 2 \mathrm{H}$, CH_{2}), $5.92(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, olefinic H), 7.15-7.98 (m, 4H, H-Ar), $7.50(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, olefinic H$), 11.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{SCl}$: C, $61.61 ; \mathrm{H}, 5.17 ; \mathrm{N}, 3.59 ; \mathrm{S}$, 8.22 \%. Found: C, 61.60; H, 5.20; N, 3.60; S, 8.20.

Ethyl 2-(3-furan-2-yl-3-oxo-propenylamino)-4,5,6,7-tetrahydrobenzo $[b]$ thiophene-3-carboxylate (12e).
This compound was obtained in 71% yield $\mathrm{mp} 148-150{ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr): v 3355-3165 (NH), 3018 (CH, olefinic), 2922 (CH, aliphatic), 1700, $1645 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): δ $=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.60(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, olefinic H), $6.6(\mathrm{~m}, 1 \mathrm{H}$, furan $\mathrm{H}-4)$, 7.23 (d, 1H, furan $\mathrm{H}-3$), $7.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}$, olefinic H), 7.91 (d, 1 H , furan $\mathrm{H}-5), 11.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.59 ; \mathrm{H}, 5.54 ; \mathrm{N}, 4.05$; S, 9.28 \%. Found: C, 62.50; H, 5.60; N, 4.00; S, 9.30.

3-Benzoyl-1 H-quinolin-4-one (13).
Compound 11a (10 mmol) was heated for 3 minutes in domestic microwave oven at full power. The residue cooled to deposit a solid, which was crystallized from DMF/EtOH (1:2) to afford 13; yield (70%) mp 230-232 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3340-3280 (NH), 1670, 1650 $\mathrm{cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d d_{6}-DMSO): $\delta=685-7.95$ ($\mathrm{m}, 9 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$) 8.31 $(\mathrm{s}, 1 \mathrm{H}), 8.95$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 12.12 (d, 1H, NH) ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=115.90,116.30,118.20,122.80,128.60,129.20,131.10,133.95$, 135.10, 137.25, 148.15, 155.30, 184.40 (CO), 188.20 (CO).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $77.10 ; \mathrm{H}, 4.45$; N, 5.62%. Found: C, $76.90 ; \mathrm{H}, 4.60 ; \mathrm{N}, 5.70$.

Preparation of piperidine-1-yl propenone 14a-d and 3-mor-pholin-4-yl-1-(4-chloro-phenyl)propenone $\mathbf{1 4 e}$.
General procedure.
Each of compounds 1a-c,f(10 mmol) was boiled in excess of piperidine, 1b was boiled with morpholine, for 3 minutes then left to cool to room temperature. The solid so formed in each case was collected by filtertration and recystallized from ethanol to afford 14a-e respectively.

1-Phenyl-3-piperidin-1-yl-propenone (14a).

This compound was obtained in 79% yield $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}$; IR (KBr): v 3012 (CH, olefinic), 2939 (CH, aliphatic), $1635 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.50\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.40(\mathrm{~m}$, $\left.4 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{~N}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}$, olefinic H), $7.30(\mathrm{~d}, 1 \mathrm{H}, J$ $=13 \mathrm{~Hz}$, olefinic H), 7.40-7.85 (m, 5H, Ar-H); -MS (EI, 70 EV): $m / z(\%)=215(87)\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 78.10 ; \mathrm{H}, 7.96 ; \mathrm{N}, 6.51 \%$. Found: C, 78.20; H, 8.00; N, 6.50.
1-(4-Chlorophenyl)-3-piperidin-1-yl-propenone (14b).
This compound was obtained in 72% yield $\mathrm{mp} 132-134^{\circ} \mathrm{C}$; IR (KBr): v 3019 (CH, olefinic), 2935 (CH, aliphatic), $1631 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.56\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.44(\mathrm{~m}$, $4 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{~N}$), $5.95(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, olefinic H), 7.44 (d, 2 H ArH), $7.65(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, olefinic H), $7.88(\mathrm{~d}, 2 \mathrm{H} \mathrm{Ar}-\mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NOCl}$: C, 67.33 ; H, 6.46; N, 5.61; Cl, 14.20 \%. Found: C, 67.30; H, 6.50; N, 5.60; Cl, 14.10.

1-(2-Nitrophenyl)-3-piperidin-1-yl-propenone (14c).

This compound was obtained in 75% yield $\mathrm{mp} 136-137^{\circ} \mathrm{C}$; IR (KBr): v 3010 (CH, olefinic), $2936\left(\mathrm{CH}\right.$, aliphatic), $1645 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.54\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.36(\mathrm{~m}$, $\left.4 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{~N}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=13 \mathrm{~Hz}$, olefinic H$), 7.60(\mathrm{~d}, 1 \mathrm{H}, J$ $=13 \mathrm{~Hz}$, olefinic H$), 7.68-8.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 64.60 ; \mathrm{H}, 6.20 ; \mathrm{N}, 10.76 \%$. Found: C, 64.50; H, 6.30; N, 10.70.

3-Piperidin-1-yl-1-p-tolyl-propenone (14d).
This compound was obtained in 75% yield $\mathrm{mp} 125-127^{\circ} \mathrm{C}$; IR (KBr): v 3018 (CH, olefinic), $2930\left(\mathrm{CH}\right.$, aliphatic), $1640 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=1.52\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 2.35(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.39\left(\mathrm{~m}, 4 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{~N}\right), 5.99(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, olefinic $\mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, olefinic H), 7.10-7.85 (m, 4H, Ar-H).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 78.56 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.11 \%$. Found: C, 78.50; H, 8.30; N, 6.10.
1-(4-Chlorophenyl)-3-morpholin-4-yl-propenone (14e).
This compound was obtained in 74% yield mp $114-116^{\circ} \mathrm{C}$; IR (KBr): v $3025\left(\mathrm{CH}\right.$, olefinic), $2955\left(\mathrm{CH}\right.$, aliphatic), $1635 \mathrm{~cm}^{-1}$
(CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=3.45\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.64(\mathrm{~m}$, $\left.4 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{2} \mathrm{~N}\right), 6.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14 \mathrm{~Hz}$, olefinic H$), 7.40(\mathrm{~d}, 2 \mathrm{H} \mathrm{Ar}-$ H), $7.60(\mathrm{~d}, 1 \mathrm{H}, J=14 \mathrm{~Hz}$, olefinic H), $7.90(\mathrm{~d}, 2 \mathrm{H} \mathrm{Ar}-\mathrm{H})$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{Cl}$: C, $62.03 ; \mathrm{H}, 5.61 ; \mathrm{N}, 5.56 ; \mathrm{Cl}$, 14.08%. Found: C, $62.10 ;$ H, 5.60 ; N, $5.60 ;$ Cl, 14.10.

3-(4-Chlorophenyl)-3-oxo-2-(phenylhydrazono)-proionaldehyde (15).

A cold solution of benzene diazonium salt (10 mmol) was prepared by a solution of sodium nitrite (10 mmol in $\mathrm{H}_{2} \mathrm{O}$) to a cold solution of the aniline with stirring. The resulting solution of the benzene diazonium salt was added to a cold solution of $\mathbf{1 b}$ (10 mmol) in ethanol (50 ml) containing sodium acetate. The reaction mixture was stirred at room temperature for 30 min . The solid product, so formed, was washed with water and crystallized from the ethanol; yield (74\%) mp 151-153 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3350-3240 (NH), 1695 (CHO), $1650 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=$ 6.85-7.75 (m, 9H, H-Ar), 9.3 (s, 1H, CHO), 11.5 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); MS (EI, 70 eV): m/z (\%)=286[M+, (34)].
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$: C, 62.84; H, 3.87; N, 9.77, $\mathrm{Cl}, 12.37$ \%. Found: C, $62.80 ; \mathrm{H}, 3.80 ; \mathrm{N}, 9.70, \mathrm{Cl}, 12.40$.

3-Aza-1-(4-chlorophenyl)-3-(phenylamino)-2-(phenyldiazenyl)-prop-2-en-1-one (16).
A cold solution of benzene diazonium salt (20 mmol) was prepared as described above. The resulting solution of the benzene diazonium salt was added to a cold solution of $\mathbf{1 b}(10 \mathrm{mmol})$ in DMF (50 ml). The reaction mixture was stirred at room temperature for 30 min . The solid product, so formed, was washed with water and crystallized from the DMF/ethanol (1:2); yield (64\%) $\mathrm{mp} 270-272{ }^{\circ} \mathrm{C}$; IR (KBr): v 3350-3240(NH), $1660 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=6.85-7.75$ (m, 14H, H-Ar), 12.45 (s , $1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 eV): m/z (\%)=362[M+, (24)].
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{OCl}$: C, $66.21 ; \mathrm{H}, 4.17$; $\mathrm{N}, 15.44$, Cl, 9.77 \%. Found: C, 66.10; H, 4.20; N, 15.60, Cl, 9.80.

Preparation of azolylpyridone $\mathbf{1 7}$ and $\mathbf{1 8}$.

General Procedure

To a solution of $2(10 \mathrm{mmole})$ in ethanol $(20 \mathrm{ml})$, was added (10 mmole) of each of 3-amino-5-methyl isoxazole or 3-amino-1,2,4-triazole. The reaction mixture was refluxed for 6 h . The solid product, so formed, on evaporation of the excess solvent
was collected by filtration and crystallized from ethanol to give 17 and 18 respectively.

1-(5-Methyl isoxazol-3-yl)-3,5-diphenyl-1 H -pyridin-4-one (17).
This compound was obtained in 66% yield $\mathrm{mp} 182-184^{\circ} \mathrm{C}$; IR (KBr): v $1655 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=2.35(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 7.14-7.85 (m, 12H, H-Ar), 8.1 ($\mathrm{s}, 1 \mathrm{H}$, isoxazol H-4), ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO): $\delta=17.35\left(\mathrm{CH}_{3}\right), 102.50,122.70,125.90$, 127.70, 128.90, 135.10, 138.20, 148.70, 159.90, 185.70 (CO).

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $76.81 ; \mathrm{H}, 4.91 ; \mathrm{N}, 8.53 \%$. Found: C, $76.90 ; \mathrm{H}, 4.80 ; \mathrm{N}, 8.50$.

3,5-Diphenyl-1-(2H-[1,2,4]triazol-3-yl-1H-pyridin-4-one (18)

This compound was obtained in 69% yield $\mathrm{mp} 197-198^{\circ} \mathrm{C}$; IR (KBr): v $1665 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO): $\delta=7.14-7.85$ ($\mathrm{m}, 12 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), 8.5 ($\mathrm{s}, 1 \mathrm{H}$, triazole $\mathrm{H}-5$).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 72.60 ; \mathrm{H}, 4.49 ; \mathrm{N}, 17.82 \%$. Found: C, 72.60; H, 4.40; N, 17.90.

REFERENCES AND NOTES

[1] B. Al-Saleh, M. M. Abdel-Khalik, A. Al-Enzy, and M. H. Elnagdi, J. Chem. Res (S), 6541999.
[2] C. Reidlinger, R. Dworczak, and H. Junek, Monatschefte fur Chemie, 129, 1207 (1998).
[3] M. Buback, J. Abeln, T. Hubsch, C. Ott, and L. F. Tietze, Liebigs Ann., 9 (1995).
[4] S: M. Al-Mousawi, K. S: George, and M. H. Elnagdi, Pharmazie, 8, 54 (1999).
[5] M. M. Abdel-Khalik; M. H. Elnagdi, and S: M. Agamy; Synthesis, 1168 (2000).
[6] B. Al-Saleh, M. M. Abdel-Khalik, A. M. Eltoukhy and M. H. Elnagdi, J. Heterocycl. Chem. 39, 1035 (2002).
[7] M. M. Abdel-Khalik and M. H. Elnagdi; Synthetic Commun., 32, 159 (2002).
[8] F. Al-Omran, M. M. Abdel-Khalik, and M. H. Elnagdi; Synthesis, 91 (1997).
[9] H. A. Al-Awadi; Y. A. Ibrahim and M. H. Elnagdi, Tetrahedron, 57, 1609 (2001).
[10] B. Al-Saleh, N. Al-Awadi; H. Al-Kandari; M. M. AbdelKhalik, and M. H. Elnagdi, J. Chem. Res. (S) 16 (2000).
[11] K. M. Al-Zaydi, E. A. Hafez, and M. H. Elnagdi, J. Chem. Research (S), 154 (2000); (M) 510 (2000).

